Statistik
Spatial
Ø Autokorelasi
Spatial (O&U Ch 7 pp. 180-205
–
Satu
valiabel
Ø
Matrik bobot
Ø
Statistik Hitungan Gabungan
Ø
Moran’s I
(O&U pp 196-201)
Ø
Geary’s C Ratio (O&U pp 201)
Ø
General G
Ø
LISA
Ø Korelasi dan
Regresi
–
Dua variabel
Ø
Standard
Ø
Spatial
Deskripsi
lawan Kesimpulan
Ø Statistik
deskripsi dan penjelasan deskripsi
Ø Berkaitan
dengan memperoleh ringkasan pengukuran
untuk menggambarkan seperangkat data
Ø Statistik kesimpulan dan statistik
dapat disimpulkan
Ø Berkaitan dengan
membuat kesimpulan dari sampel tentang populasi
Ø Berkaitan dengan
membuat kesimpulan yang sah tentang mendasari proses dari pola yang diamati
We will be looking at both
Statistik
Deskriptif klasik: Univariate (Satu variable)
Ø Pusat Tendensi:
Ringkasan untuk ukuran satu variable tunggal :
Ø mean (rerata)
Ø median (nilai
tengah)
Ø mode (yang
paling sering muncul)
Ø Dispersi:
ukuran sebaran atau variabilitas
Ø Variance
(variasi)
Ø Simpangan baku
(Akar kuadrat dari variasi)
(Akar kuadrat dari variasi)
Ø Pusat tendensi
bisa didapat dalam ArcGIS dengan:
- Membuka sebuah table, klik kanan mouse pada
heading kolom dan pilih Statistics.
- Pergi ke ArcToolbox>Analysis>Statistics>Summary
Statistics
Sebuah
penghitungan frekuensi yang nilainya terjadi pada variabel
Ø
Paling mudah dipahami untuk variabel kategori
(e.g. kesukuan)
Ø
Untuk variable kontinu, frekuensi dapat di :
Ø Dihitung dengan
membagi variable kedalam kategori atau “keranjang”
(e.g kelompok masukan)
(e.g kelompok masukan)
Ø Digambarkan
oleh proporsi luasan dibawah kurva frekuensi
Dalam
ArcGIS, anda dapat memperoleh
perhitungan frekuensi pada variable kategori melalui:
v ArcToolbox>Analysis>Statistics>Frequency
Ø Mengukur
derajat asosiasi atau kekuatan dari
hubungan antara dua variable kontinu
Ø Skalanya
bervariasi dari (–1 melalui 0
ke +1)
-1 mengisyaratkan hubungan negatif sempurna
Ø
As values on one variable rise, those on the
other fall (price and quantity purchased)
0 implies no association
+1 implies perfect positive association
Ø
As values rise on one they also rise on the
other (house price and income of occupants)
Classic
Descriptive Statistics: Bivariate
Contoh Koefisien Korelasi menggunakan “rumus
perhitungan”
Ketika kita menelusuri statistik spasial, kita
akan melihat banyak analogi untuk mean, varians, dan koefisien korelasi, dan
berbagai formula mereka
0 komentar:
Posting Komentar